Electric Vehicle Optimization Team 2

Presentation By : Samantha Beeler, Jeremy Randolph, Tyler Mitchell, and Jakob Consoliver-Zack

Sponsor: Cummins - Dr. Michael Hays Advisor: Dr. Juan Ordonez

Presentation Outline

- Project Scope
- Preliminary Design
- Final Design
 Electrical Design
 Mechanical Design
- Project Management

Cabin electronics drain semi-truck batteries.

- Cold weather conditions reduce battery output.
- Hotel System of Charging

Sponsor presented the design team with two major problems:

- +Current range is unsatisfactory
- +Cannot operate in -29°C (-20°F)

Overview

Goal Statement:

"To increase the current range and operable conditions of the electric vehicle by utilizing a secondary power source in efforts to apply this to semitrucks."

Objectives

- Increase the lower temperature limit to -29°C.
- Document the current system performance.
- Incorporate a generator.
- Integrate a battery monitoring system.
- Ensure the vehicle can charge while running.

Presentation Outline

Project Scope

Preliminary Design

Final Design
 Electrical Design
 Mechanical Design

Project Management

Golf Cart Features

Existing Features

- Powered by six 8V lead-acid batteries.
 The batteries do not work
- On-Board Charger
 The charger does not work
- 5,000 Watt DC Motor

Added Components

- QG2500 Cummins Generator
 + Battery Monitoring System
- New Batteries
- New Charger

Figure 1. Picture of golf cart

Table 1. Morphological Chart

Parameter	Option 1	Option 2	Option 3
Generator Location	Under back seat	On a Carriage	In place of the back seat
How to warm the batteries	Use generator exhaust	Use heating pad	Insulate the batteries
Ensure generator operation	Synthetic oil	Oil pan heater	Oil dipstick heater
Charging system	Use onboard charger system	Develop new charger system	Modify present charger system

Selected Option

Proposed System

Figure 2. Simplified system diagram of initial design.

Presentation Outline

Project Scope

Preliminary Design

Final Design
 + Electrical Design

Mechanical Design

Project Management

Team 2 Electric Vehicle Optimization | Presenter: Jakob Consoliver-Zack

9

Detailed System Diagram

10

Figure 3. Detailed System Diagram

Motor Power System

11

Figure 4. Power System Diagram

Auxiliary Loads

JM SPST Relay Rating: 20A @ 240V_{AC}

Figure 5. Auxiliary Load System Diagram

Sensor Inputs

13

Figure 6. Sensor Inputs System Diagram

Detailed System Diagram

Figure 7. Detailed System Diagram

- Control when generator turns on and off.
- Control when heating pads are on.
- Monitor the battery temperature.
- Monitor the battery voltage.
- Control the motor power source.
- Control when the batteries are charging.

State Diagram

Figure 8. State Diagram of the proposed mechatronic system.

- Project Scope
- Preliminary Design
- Final Design
 Electrical Design
 Mechanical Design
- Project Management

Generator Mount Design

Figure 9. Final generator mount design.

Figure 10. Assembly of mount attached to generator.

Team 2 Electric Vehicle Optimization | Presenter: Jeremy Randolph

18

Generator Mount Analysis

19

Figure 11. FEA stress and displacement analysis of final mount design.

Mount Technical Specifications

- 1 ¼" x 1 ¼" x ½" and 2" x 2" x ½" Steel Angle
- Hot rolled, low carbon steel
- Its 90 degree angle adds strength and rigidity
- Fastened together with 3/8" grade 8 bolts
- Lock washers and Loctite Threadlocker to prevent bolts from unfastening from vibrations.
 Figure 12. Photograph of generator mounted to rear of cart.

20

Propane Tank Mount

Figure 14. Rear of cart with propane tank mounted.

Generator Battery and Power Supply Mount 22

Figure 15. Generator battery and power supply mount

Figure 16. Exploded view of mount.

Generator Battery and Power Supply Mount 23

Figure 17. Photograph of the power supplies and battery mounted in the golf cart without golf cart batteries installed.

Figure 18. Photograph of the power supplies and generator battery mounted in golf cart with golf cart batteries installed.

Systems Testing

Presentation Outline

Project Scope

- Preliminary Design
- Final Design
 Electrical Design
 Mechanical Design

Project Management

Gantt Chart

	GANTT -	\succ	\leq	2016		Ger	nerator Delin	/ered			E	Planned End	of Testing				Planned	Project End
	project			Week 2	Week 3	Week 4	Week S	 Week 6	Week 7	Week B	Week S	Week 1B	Week 11	Week 12	Week 13	Week 14	Week 15	Week 16
Nan	me	Begin date	End date	1/3/16	1/10/16	1/17/16	1/24/16	1/31/16	2/7/16	2/14/16	2/21/16	2/28/16	3/6/16	3/13/16	3/20/16	3/27/16	4/3/16	4/10/16
	Await Generator Delivery	1/1/16	1/20/16	_	_							1		_	_			_
	Generator Delivered	1/20/16	1/20/16	_	_	•		_	_	_	_				_			_
•	 Develop Circuitry 	1/12/16	1/26/16	_										_	_			_
	 Design Heating Pad Circuit 	1/12/16	1/26/16	_										_				_
	 Design Charger Circuit 	1/12/16	1/26/16	_		- *								_				_
	 Develop Generator-Microcon 	ntr 1/21/16	1/22/16	_										_				_
•	 Mount System 	1/21/16	2/8/16	_														_
	 Design Mount System 	1/21/16	2/4/16	_														_
	 Fabricate Mount 	2/5/16	2/8/16															
•	 Hardware & Software Testing 	1/8/16	2/26/16									H						
	 Order Select Components 	1/8/16	1/15/16			⊢ _												
	 Test Transistors 	1/21/16	1/21/16			Ĺ												
	Test Relays	1/26/16	1/26/16				Ĺ											
	Test Temperature Sensor	2/6/16	2/7/16															
	Test Heating Pads	2/6/16	2/7/16															
	Test Genset Startup Code	2/10/16	2/10/16						Ď									
	Test Voltage Monitoring	2/12/16	2/22/16						[
	Test Power Supplies	2/17/16	2/26/16									1						
	Planned End of Testing	2/26/16	2/26/16								•	•						
W	Prototype Assembly & Integration	n 1/18/16	4/4/16			-												
	Develop/Debug Software	1/18/16	3/30/16															
	Assemble and Test Prototype	e 2/27/16	3/6/16															
	 Order Remaining Component 	ts 2/27/16	3/11/16											h				
	 Assemble and Test Entire Circle 	rcuit 3/12/16	3/25/16											•		1		
	Install Design into Cart	3/26/16	3/27/16													h		
	 Test Systems and Fix Compli 	ca 3/28/16	4/4/16															
	Planned Project End	4/4/16	4/4/16														•	

Figure 19. Project timeline

Budget Analysis

Table 2. Budget Analysis

Budget Breakdown	

Parts	Cost
Circuit Components	\$1084.20
Batteries & Cables	\$1427.98
Hardware	\$280.58
Total Used	\$2792.76
Budget Remaining	\$78.24

Figure 20. Budget Chart

Conclusion & Lessons Learned

Conclusion

- ✦Have a functioning prototype.
- ✦Finished slightly behind schedule.
- +Developed design while staying under budget.

Lessons Learned

- Importance of background research
- +Get extra parts if possible
- +Assembly takes a lot longer than you would think

Future Work

- ✦Determine future of prototype
 - Project continued into next year?
 - Return to sponsor?
 - Store in COE facility?
- Develop method to determine battery state of charge

References

- [1] Cummins. RV Generator Set Quiet GasolineTM Series RV QG 2800. N.p.: Cummins, n.d. Cummins Powersuite. Cummins. Web. 20 Oct. 2015.
- [2] Kiessling, Reiner. "Lead Acid Battery Formation Techniques." Digatron Firing Circuits (n.d.): n. pag. Web. 4 Nov. 2015.
- [3] Handbook for Stationary Lead-Acid Batteries. N.p.: GNB Industrial Power, Feb. 2012. Pdf.
- [4] Zerostart Blanket Style Battery Heater. Digital image. Partdeal. N.p., n.d. Web. 9 Nov. 2015.
- [5] "Ruggeduino-ET." Rugged Circuits. N.p., n.d. Web. 09 Nov. 2015.
- [6] "TMP36 Analog Temperature Sensor." Adafruit. N.p., Web. 09 Nov. 2015.
- [7] Sanders, Chris. Question mark. Digital image. ON THE IMPORTANCE OF QUESTIONS IN AN INVESTIGATION. N.p., n.d. Web. 20 Oct. 2015.

Questions?

Decision Matrices

Criteria	Option 1	Option 2	Option 3
Cost	S	_	S
Weight	S	_	+
Noninvasive	S	_	_
Safety	S	_	_
Total	0	-4	-1

Table C. Ensure Generator Operation

Criteria	Option 1	Option 2	Option 3
Cost	S	_	_
Weight	S	_	_
Noninvasive	S	_	_
Safety	S	_	_
Total	0	-4	-4

Table B. How to warm the batteries

Criteria	Option 1	Option 2	Option 3
Cost	S	+	+
Weight	S	+	+
Noninvasive	S	+	+
Safety	S	+	+
Total	0	+4	+4

Table D. Charging System

Criteria	Option 1	Option 2	Option 3
Cost	S	_	_
Weight	S	S	S
Noninvasive	S	S	+
Safety	S	+	+
Total	0	0	+2

Motor Power Supply Circuit

Team 2 Electric Vehicle Optimization

32

Heating Pad and Charger Circuit

Team 2 Electric Vehicle Optimization

33

Control Circuit

Team 2 Electric Vehicle Optimization

Sensor Inputs

35

Team 2 Electric Vehicle Optimization

FMEA

Component	Potential Failure Mode	Potential Failure Effects	Severity	Potential Causes
What is the primary component affected?	In what ways can the component fail?	What is the impact of this failure mode?	How severe is this failure to the user?	What causes the component to fail?
TT (* T	Not activating	Batteries will not be heated in cold climates	Medium	Loose wire Inaccurate temp. sensor reading Damaged Relay
Heating pads	Remaining active	Heating pads will stay on Might overload the generator if charger is active. Could overheat the batteries	High	Damaged transistor Damaged relay
Changen	Not activating	Batteries aren't receiving a charge	High	Loose wire Lack of power from generator
Churger	Remaining active	Charger remains active, but won't overcharge batteries	Low	Damaged transistor Damaged relay
Generator	Not starting	Generator is inactive, but the system will still switch to generator powered state	High	Loose wire Low/no oil No/poor propane connection Insufficient battery charge Circuit breaker tripped
	Won't shut off	Generator will remain on unnecessarily, potential damage to generator	Medium	Damaged transistor Damaged Relay

FMEA Continued

Component	Potential Failure Mode	Potential Failure Effects	Severity	Potential Causes
	Not activating	Power supplies will be inactive	High	Loose wire
Power supplies	Remaining active	Power supplies will remain active, potential damage to power supplies	Medium	Generator won't turn off. (see generator failure modes)
Microcontroller	Not turning on	System won't function	High	Installation error Improperly code Damaged pins Sensor error
Temperature sensor	Not giving accurate temperature readings	System will incorrectly switch states	Medium	Manufacturing defects Improperly coded Installation error
Current sensor	Not giving accurate temperature readings	System will incorrectly switch states	High	Manufacturing defects Improperly coded Installation error

Fall Gant Chart

Team 2 Electric Vehicle Optimization | Presenter: